

Text Display
It can display messages up to 40 characters long from a selection of 97 character types.

Operational Buttons

Use the selection buttons for easy confirmation or modification of the circuit being displayed.

Memory Cartridge

Using the FL1A-PM1 (yellow) memory cartridge it is not only possible to save your program, but also duplicate it without any special procedures.
The FL1A-PM2 (red) memory cartridge will back up the program, and protect the internal program from unintended modification or unauthorized copying.

Economical Type

Models available without the display panel and operational buttons.

Part Number

Part Number	Rated Voltage	Input Signal	Output Signal	With Display	With Clock	Input/Output
FL1A-H12RCE	12/24V DC	DC I7and 18 are used for digital/analog	Relay Output	Yes	Yes	8/4
FL1A-B12RCE				-		
FL1A-H12SND	24V DC		Transistor Source Output	Yes	-	
FL1A-H10RCA	24V AC	AC	Relay Output	Yes	Yes	6/4
FL1A-B10RCA				-		
FL1A-H10RCB	100-240V AC	AC		Yes		
FL1A-B10RCB				-		

Options

Description	Part Number	Note
Memory Cartridge (Yellow)	FL1A-PM1	Rewritable
Memory Cartridge (Red)	FL1A-PM2	Not Rewritable
Programming Software: WindLGC	FL9Y-LP1CDW	CD w/Online Manual
PC Cable	FL1A-PC1	
35MM DIN Rail Aluminum, 1m/3.28ft	BNDN1000	
Mounting Clips	BNL6	

Applications

The IDEC SmartRelay can replace multiple timers, relays and counters in many control and monitoring applications. The compact body $(72 \times 90 \times 55 \mathrm{~mm}$) houses a real-time clock and calendar, plus 29 different function blocks. Program and edit using either the "smart" selection buttons or our even "smarter" exclusive software, WindLGC. The IDEC SmartRelay is the ideal solution for managing automatic lighting, access control, watering systems, pump control, or ventilation systems in factory or home automation.

"SMARTer" than Relays, Counters, and Timers!

Change your current system easily, from multiple relays, counters and timers to a single IDEC SmartRelay.

"SMARTer" than systems with Programmable Logic Systems

The IDEC SmartRelay can "smartly" mimic many functions of programmable logic controller components. The IDEC SmartRelay also features max. 10A output contacts and up to 40 letters of display.

"SMARTer" Problem Solving

Reduce your programming time by utilizing and selecting from one of the 29 function blocks. Edit or modify programs without any special skills or advanced training.

	Part Number		With Display	FL1A-H12RCE	FL1A-H12SND	FL1A-H10RCA	FL1A-H10RCB
			Without Display	FL1A-B12RCE	-	FL1A-B10RCA	FL1A-B10RCB
suoņeэ!!!eads fu!peıado	Rated voltage			12/24V DC	24V DC	24V AC	100-240V AC
		Allowable Voltage Range		$\begin{aligned} & 10.8-15.6 \mathrm{~V} D C \\ & 20.4-28.8 \mathrm{~V} D C \end{aligned}$	20.4-28.8V DC	20.4V-26.4V AC	85-264V AC
		Rated Frequency		-	-	-	$50 / 60 \mathrm{~Hz}(47-63 \mathrm{~Hz})$
		Input Current		$\begin{aligned} & 10-120 \mathrm{~mA}(12 \mathrm{~V} \mathrm{DC}) \\ & 10-85 \mathrm{~mA}(24 \mathrm{~V} \text { DC) } \end{aligned}$	10-20 mA (24V DC)	15-120 mA (24 V DC)	$\begin{aligned} & 10-30 \mathrm{~mA}(100 \mathrm{~V} \text { AC) } \\ & 10-20 \mathrm{~mA}(240 \mathrm{VAC}) \end{aligned}$
		Allowable Momentary Power Interruption		5 ms	-	5 ms	$\begin{aligned} & 10 \mathrm{~ms}(100 \mathrm{~V} \mathrm{AC}) \\ & 20 \mathrm{~ms}(240 \mathrm{~V} \text { AC) } \end{aligned}$
		Power Consumption		$\begin{aligned} & \text { 0.1-1.5W (12V DC) } \\ & 0.2-2.0 \mathrm{~W}(24 \mathrm{~V} D C) \end{aligned}$	0.2-0.5W (24V DC)	0.3-2.9W (24V AC)	1.1-3.5W (100V AC) 2.3-4.8W (240V AC)
		Reverse Polarity Protection		Yes	Yes	-	-
	$\begin{aligned} & \text { 든 } \\ & \text { 은 } \end{aligned}$	Backup Duration		80 h at $25^{\circ} \mathrm{C}$	-	80 h at $25^{\circ} \mathrm{C}$	80 h at $25^{\circ} \mathrm{C}$
		Clock Accuracy		± 5 s/day maximum	-	± 5 s/day maximum	± 5 s/day maximum

Specifications con't

Part Number			$\begin{aligned} & \text { FL1A-H12RCE } \\ & \text { FL1A-B12RCE } \end{aligned}$	FL1A-H12SND	FL1A-H10RCA FL1A-B10RCA	FL1A-H10RCB FL1A-B10RCB
芌	Input Signal		DC	DC	AC	AC
	Input Points		8 (11-18)	8 (11-18)	6 (11-16)	6 (11-16)
	Analog Input Points		$2(17,18)^{*}$	$2(17,18)^{*}$	-	-
	Fast Inputs		2 (I5, I6) Max 1KHz**	2 (I5, I6) Max 1KHz**	-	-
	Analog Input Voltage Range		0 to10V DC (maximum rated voltage: 28.8 V DC)	0 to 10V DC (maximum rated voltage : 28.8V DC)	-	-
	Rated Input Voltage		12/24V DC	24V DC	24 V AC	100-240V AC
	Allowable Voltage Range		$\begin{aligned} & 10.8-15.6 \mathrm{~V} \mathrm{DC} \\ & 20.4-28.8 \mathrm{VDC} \end{aligned}$	20.4-28.8V DC	20.4-26.4V AC	85-264V AC
	Isolation		Not Isolated	Not Isolated	Isolated	Not Isolated
	Operating Range	Turn OFF Voltage	$<5 \mathrm{D}$ DC	<5V DC	$<5 \mathrm{~V}$ AC	<40V AC
		Turn ON Voltage	$>8 \mathrm{VDC}$	$>8 \mathrm{VDC}$	$>12 \mathrm{~V} \mathrm{AC}$	$>79 \mathrm{VAC}$
		Turn OFF Current	$\begin{aligned} & <1.0 \mathrm{~mA}(11-\mid 6) \\ & <0.05 \mathrm{~mA}(17-18) \end{aligned}$	$\begin{aligned} & <1.0 \mathrm{~mA}(11-16) \\ & <0.05 \mathrm{~mA}(17-18) \end{aligned}$	$<1.0 \mathrm{~mA}$	$<0.03 \mathrm{~mA}$
		Turn ON Current	$\begin{aligned} & >1.5 \mathrm{~mA}(11-16) \\ & >0.1 \mathrm{~mA}(17-18) \end{aligned}$	$\begin{aligned} & >1.5 \mathrm{~mA}(11-16) \\ & >0.1 \mathrm{~mA}(17-18) \end{aligned}$	$>2.5 \mathrm{~mA}$	$>0.08 \mathrm{~mA}$
	Turn ON Time		1.5 ms (Typ.)	1.5 ms (Typ.)	15 ms (Typ.)	50 ms (Typ.)
	Turn OFF Time		1.5ms (Typ.)	1.5 ms (Typ.)	15 ms (Typ.)	50 ms (Typ.)
	Wire Length		100 m	100 m	100m	100 m
$\begin{aligned} & \stackrel{\rightharpoonup}{\partial} \\ & \stackrel{\rightharpoonup}{訁} \\ & \hline \end{aligned}$	Output Signal		Relay Output	Transistor Source Output	Relay Output	Relay Output
	Output Type		4NO contacts	4 points	4NO contacts	4NO contacts
	Isolation		Isolated	Not Isolated	Isolated	Isolated
	Dielectric Strength (between power/ input terminal and output terminals)		2,500V AC/1 minute 500 V D//1 minute	-	2,500V AC/1 minute 500 V D//1 minute	2,500V AC/1 minute 500 V D//1 minute
	Output Voltage		-	Ext. power supply $20.4-28.8 \mathrm{~V} \mathrm{DC}$	-	-
	Maximum Load Current		Resistive Load 10 A at $12 / 24 \mathrm{~V}$ AC/DC 10 A at $100 / 120 \mathrm{~V}$ AC 10 A at $230 / 240 \mathrm{~V}$ AC Inductive Load 2 A at $12 / 24 \mathrm{~V}$ AC/DC 3A at $100 / 120 \mathrm{~V}$ AC 3 A at $230 / 240 \mathrm{~V}$	0.3A	Resistive Load 10A at $12 / 24 \mathrm{~V}$ AC/DC 10 A at $100 / 120 \mathrm{~V}$ AC 10A at $230 / 240 \mathrm{~V}$ AC Inductive Load 2 A at $12 / 24 \mathrm{~V}$ AC/DC 3A at $100 / 120 \mathrm{~V}$ AC 3A at 230/240V AC	Resistive Load 10A at $12 / 24 \mathrm{~V}$ AC/DC 10 A at $100 / 120 \mathrm{~V}$ AC 10A at 230/240V AC Inductive Load 2 A at $12 / 24 \mathrm{~V}$ AC/DC 3A at 100/120V AC 3 A at $230 / 240 \mathrm{VAC}$
	Short Circuit Protection		External fuse 16A maximum	Internal current limiting circuit: 1A	External fuse 16A maximum	External fuse 16A maximum
	Minimum Switching Load		$10 \mathrm{~mA}, 12 \mathrm{~V}$ DC	-	$10 \mathrm{~mA}, 12 \mathrm{~V}$ DC	$10 \mathrm{~mA}, 12 \mathrm{~V}$ DC
	Initial Contact Resistance		$100 \mathrm{~m} \Omega$ maximum (at 1A, 24V DC)	-	$100 \mathrm{~m} \Omega$ maximum (at 1A, 24V DC)	$100 \mathrm{~m} \Omega$ maximum (at 1A, 24V DC)
	Mechanical Life		10,000,000 operations minimum (no load, 10Hz)	-	10,000,000 operations minimum(no load, 10Hz)	10,000,000 operations minimum(no load, 10Hz)
	Electrical Life		100,000 operations minimum (rated load 10A, 1,800 operations/hour)	-	100,000 operations minimum (rated load 10A, 1,800 operations/hour)	100,000 operations minimum (rated load 10A, 1,800 operations/hour)
	Mechanical Load		10 Hz	-	10 Hz	10 Hz
	Electrical Load		-	10 Hz	-	-
	Resistive Load/Lamp Load		2 Hz	10 Hz	2 Hz	2 Hz
	Inductive Load		0.5 Hz	0.5 Hz	0.5 Hz	0.5 Hz

* Input terminals 17 and 18 are used for digital and analog inputs.
** When selecting frequency trigger function.

Function Blocks

General Function Blocks

AND
Series connection of normally open contacts (AND)
AND with RLO

Edge detection (AND \uparrow)
with edge evaluation (pos. edge)
(AND \uparrow)

NAND (AND not)

Parallel connection of normally closed contacts (NAND)

NAND with RLO

Edge detection (NAND \downarrow)

with edge evaluation (neg. edge) (NAND \downarrow)

OR

Parallel connection of normally open contacts (OR)

NOR (OR not)

Series connection of normally closed contacts (NOR)

XOR (exclusive OR)

(XOR)

NOT (negation, inverter)

Connection of closed contact (NOT)

Special Function Blocks

ON Delay

Retentive on Delay

Latching Relay

Current Impulse Relay

Interval Time-Delay Relay/Pulse Output

Edge-Triggered Interval Time-Delay Relay

Seven-Day Time Switch

Twelve-Month Time Switch

Up/Down Counter

Operating House Counter

Symmetrical Clock Pulse Generator

Asynchronous Pulse Generator

Random Generator

Frequency Trigger

Analog Trigger

Analog Comparator

Stairwell Light Switch

Dual-Function Switch

Message Texts

Circuit Diagrams

Inputs

FL1A-H12RCE / -B12RCE

The inputs of FL1A-H12RCE/-B12RCE are non-isolated and therefore require the same reference potential (ground) as the power supply. You can also pick up analog signals between the powers supply and ground.

Outputs

FL1A-H12SND

Load: 24 V DC, 0.3 A max.

FL1A-H10RCB / -B10RCB

Warning: Existing safety regulations (VDE 0110, ... and IEC 1131, ..., as well as UL and CSA) prohibit the connection of different phases to the inputs of FL1AH10RCB /-B10RCB.

FL1A-...R

N/M

Protection with automatic circuit breakers (max. 16A).

Key features include:

- Design tool for the IDEC SmartRelay
- Windows 95, 98 and NT compatible
- Edits, save and print out your program
- Function blocks
- Drag and drop simplicity
- Offline program simulation
- Boolean logic
- Tag name editor

Just click the function blocks you need and link function blocks for easy wiring. Devise complicated circuits using the convenient functions of WindLGC.

- CPU recommendation: Pentium 133MHz or higher
- Memory: 32MB or more
- RAM recommendation: 64MB
- Hard disk space: 90MB or more for installing WindLGC software.
- Recommendation: Display more than 800×600 dots and 256 colors

Function Block C_{0} GF SF

Setup and modification of function block parameters is easy using the function block dialog boxes.

Link Tool \leftrightarrows

Link function blocks to complete your program. Set up as many as 56 function blocks in one circuit program.

Label Tool A

Write and set up a comment on the WindLGC circuit program screen.

Confirm the wiring status by simulating on the WindLGC screen. You can simulate the conditions when power is turned on or off.

Split/Reconnect Tool

Redraw complicated line connections with this tool in order to eliminate line crossings.

This section will explain and familiarize users with some features of the IDEC SmartRelay. An example program is included in this section to familiarize users with some basic functions in the IDEC SmartRelay. Having learned the basic skills, users can proceed to more advance programming.

Main Menu Screen

When power is connected to the IDEC SmartRelay, one of the two following screens will display. If there is no program in the IDEC SmartRelay, the word "No Program" will be shown. If there is a program in the IDEC SmartRelay, it will automatically switch to Run mode.
No Program

(Run Mode)

Main Menu and Programming Screen

To change the screen to programming mode press left, right and OK keys at the same time.
$>$ Program.
PC/Card. start

Select Program and press OK key.

Set Clock:

Set Clock
 Su 00:00
 MM. DD. YY
 01.01 .00

From this screen users can select Edit Program,
Clear Program or Set Clock in the IDEC SmartRelay.

Proceed to Set Clock section if you want to set the clock now or to Example
Program if you want to skip the Set Clock section and go into programming.

From this screen select Set Clock.

Press OK.

Use the left/ right keys to move the cursor and the up/down keys to change the setting.

Press $\mathbf{O K}$ after desired setting has been selected.

Example Program: OFF Delay Timer

In this example, users will create an off delay timer that will turn on an output Q1 when input I1 is energized and Q1 will turn off 5 seconds later. Users also will be able to go into parameter screen to monitor or change timer preset value.

Complete circuit diagram:

Programming Examples con't

This will be a default screen when Edit Prg is selected.

Press OK.
\downarrow Co (constant) will be displayed.

Select $\boldsymbol{S F}$ (special function) using up/down keys and press OK.

The first function block will be an ON delay. Use the up/down keys and select the Off Delay Timer.

Press OK.

The cursor now has moved to input Trg.

Press OK. Co will be displayed. Press OK again. At this point select I1 (using up/down key) as an input trigger.

Press OK.

The cursor now moves to input \boldsymbol{R} (Reset).

Note: Input R is not used in this example.

Press $\mathbf{O K}$. Using the same procedures in the previous step. Select \boldsymbol{X} (do not use) as a Reset input.

Press OK.

The cursor is now under input T .

Press $\mathbf{O K}$

The parameter setting screen is now displayed.

Use the left/right keys to move the cursor, and the up/down keys to change the timer preset value.

In this example, set timer preset value equal 5 sec onds.
Press OK.

Programming is now complete and the following screen appears.

To run the program, presses ESC key twice and select Run.

Parameter Mode: Monitoring and Changing the Preset Value

$\frac{B}{T} 01: T_{T}^{T}=05.00 \mathrm{~s}+$
$\mathrm{Ta}=00.00 \mathrm{~s}+$

While the IDEC SmartRelay is in Run mode, press both the $\boldsymbol{E S C}$ and $\mathbf{O K}$ keys at the same time.

Select Set Param and press $\mathbf{O K}$.

ESC

With the communication cable (FL1A-PC1) connected to the IDEC SmartRelay, press the left, right and $\mathbf{O K}$ keys at the same time.

Press OK.

Select PC to IDEC
SmartRelay and press OK.

Note:

Programming Examples con't

The setting of the IDEC SmartRelay is now completed. Next step is the PC setting.

Note: A program can also be downloaded into the IDEC SmartRelay by clicking on the download icon on the standard toolbar.

A program can be uploaded from the IDEC SmartRelay to a PC by clicking on the upload icon on the standard toolbar.

PC Setting:

From the menu bar, select Tools, Transfer, $P C \rightarrow$ SmartRelay.

The above error message window will be displayed if
the setting in the IDEC SmartRelay does not configure
correctly and/or the communication cable is not con-
The above error message window will be displayed if
the setting in the IDEC SmartRelay does not configure
correctly and/or the communication cable is not con-
The above error message window will be displayed if
the setting in the IDEC SmartRelay does not configure
correctly and/or the communication cable is not connected properly.

When downloading is complete, check the operation of the program in the IDEC SmartRelay.
Note: These steps can be omitted if the communication cable is connected before power is applied to IDEC SmartRelay. This will be the default screen when power is applied after the communication cable is connected to the IDEC SmartRelay.

